Huludao Zinc Refinery Effluent Treatment Plant

JOINT VENTURE Of MITSUI MINING & SMELTING CO.,LTD MITSUBISHI MATERIAL CORPORATION

Process Technology and Plant Engineering by MESCO Inc.

Location of Effluent Treatment Plant (Huludao Zinc Refinery)

Main elements of the Effluent

1999 Survey

	Flow	H_2SO_4	Zn	Сd
	(m^3/d)	(m g/l)	(m g/l)	(m g/l)
Effluentfrom Zinc refinery	600	20000	1600	400
Effluent from Copper refinery	600	20000	4800	1200

Рb	As	F	Сu	Нg
(m g/l)				
420	1460	1700	1.6	10.0
110	8400	1600	167	0.8
270	4930	1650	84.3	9.0

Treatment methods of materials

H_2SO_4	: Removal method of calcium sulfate $(CaSO_4 \cdot 2H_2O)$
Zn、Cd、Pb、Cu	 Flocculation Sedimentation Method with insoluble salt Ion exchange process Magnetic separation with ferrite
As F	 Coprecipitation method Flocculation Sedimentation Method with sulfide Calcium fluoride method
Hg	 Flocculation Sedimentation Method with sulfide Absorption Method

The process of our Effluent Plant

(Specializing and combining the disposing method of various heavy metals respectively)

1st Neutralization Treatment

*Removing SO₄

2nd Neutralization Treatment

*Removing various heavy metals using the Method by

Flocculation Sedimentation with insoluble salt

3rd Final Treatment

*Removing heavy metals which not enough to be removed by 2nd neutralization treatment by using the method of Flocculation Sedimentation with sulfide

Sand Filtration Treatment

* Removing suspended solids remained after Solid-liquid separator

First Neutralization Treatment (Precipitation method of Calcium sulfate)

<Processing Object> SO4²⁻

<Treating Method>

To neutralize with hydrated lime (Ca(OH)₂) upto approximately pH 2.5.

<Reaction>

Calcium sulfate (CaSO₄•2H₂O) is produced reacting SO₄²⁻ and Ca²⁺ Ca(OH)₂ + H₂SO₄ \rightarrow CaSO₄•2H₂O \downarrow

2nd Neutralization Treatment

< Treatment Materials >

Zn, Cd, Pb, Cu, As, F(Fe)

< Treatment Method >

*To add FeSO4 \cdot 7H₂O to the Effluent to remove Arsenic with precipitation method.

*To neutralize the Effluent with hydrated lime (Ca(OH)₂) upto pH 11 approximately.

*To prompote the oxidation of Fe(OH)₂.

< Reaction >

 $\begin{array}{rcl} \mathrm{M}^{2+} & + & \mathrm{Ca}(\mathrm{OH})_2 \rightarrow & \mathrm{M}(\mathrm{OH})_2 \downarrow & + & \mathrm{Ca}^{2+} \\ \mathrm{Fe}^{2+} & + & \mathrm{Ca}(\mathrm{OH})_2 \rightarrow & \mathrm{Fe}(\mathrm{OH})_2 \downarrow & + & \mathrm{Ca}^{2+} \\ \mathrm{Fe}(\mathrm{OH})_2 & + & 1/4\mathrm{O}_2 & + & 1/2\mathrm{H}_2\mathrm{O} \rightarrow & \mathrm{Fe}(\mathrm{OH})_3 \downarrow \\ \mathrm{2F}^- & + & \mathrm{Ca}(\mathrm{OH})_2 \rightarrow & \mathrm{CaF}_2 \downarrow & + & 2\mathrm{OH}^- \end{array}$

2nd Neutralization Treatment

3rd Treatment

< Treatment Materials > As, Hg

< Treatment Method >

* After neutralization of secondary effluent with H₂SO₄ upto pH 5-6 approximately, Na₂S to be added.
* To add FeSO₄, 7H₂O and flocculent to collect sludge.
* To re-neutralize with NaOH upto pH 8.

< Reaction >

*To form insoluble As_2S_3 , HgS reacting of As and Hg with S $2H_3AsO_3 + 3Na_2S \rightarrow As_2S_3 + 6NaOH$ $Hg^+ + Na_2S \rightarrow HgS + 2Na^+$

Sand filtration treatment

Flowchart of plant (First and second neutralization treatment)

Flowchart of plant (Third treatment and Sand filtration treatment)

Cross-section diagram of pilot plant

Planform of pilot plant

Centrifuge

Filterpress

Operation management of tratment plant

- * Monitoring system
- Function management of equipments

 Start, Stop, state of trouble
 Indication of instantaneous value of pH
 Indication of treating water quantity
 State of each progression
- •Output of monthly and daily report Maximum, minimum, and average of pH and Quantities of treatment water
- * Monitoring system
- •Camera
 - Filter press
 - Centrifuge
- Paging system Filter press Centrifuge Reagent room

Control System of Treatment plant

Main Control room

- * Main control panel
 - Automatic controll
 - Select of operating condition of each equipment (Automatic, Manual, and Stop)
 - Set the level of pH
 - Indication of quantities of treating water
 - Indication of several alerm
- * Local control panel
 - Manual operation
 - Maintenance of equipments

Target treatment water and Actual treated water

< Properties of Inlet Water >

	рН	Zn	Cd	Pb	As	F	Cu	Hg
		(mg/l)						
Target	0.4	3200	800	270	4930	1650	84.3	9.0
Actual Max.	0.44	4343	379	153	1037	548	343	1.1
Actual Average	1.8	269	38	121	44	35	2.6	4.0

< Properties of Treated Water >

	рН	Zn (mg/l)	Cd (mg/l)	Pb (mg/l)	As (mg/l)	F (mg/l)	Cu (mg/l)	Hg (mg/l)	SS (mg/l)
Target	6~9	4.0	0.1	1.0	0.5	15	1.0	0.1	150.0
Actual	6.9-8.5	0.5-2.0	0.05-0.15	0.5-2.0	0.2-0.4	10-15	0.08- 0.15	0.003- 0.008	30-72

< Quantities of Treatment Water>

	(m3/Day)
Target	1200
Actual	500-1080

Target and Actual Sludge

< Sediments >

Gypsum : Target :39.7t-Dry/d (45.2t-Wet/d) Moisture content 12%

Actual :1.5t-Dry/d (1.7t-Wet/d) Average amount Moisture content 12% Actual performance

Sludge :

- Target:37.1t-Dry/d(106.1t-Wet/d)Moisture content 65%
- Acutual: 4 t-Dry/d (11.4t-Wet/d) Average amount Moisture content 60% Actual performance

Target and Actual Sludge < Crystal picture of Gypsum>

Good Crystal Figure

